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Abstract—The Expectation-Maximization algorithm is applied
in this paper to estimate state-space sampled-data models includ-
ing constraints on the location of the poles. Linear quadratic
matrix inequalities are used as constraints to obtain a model
that preserves properties of the continuous time system, such as
stability or damping characteristics. The results of the algorithm
are shown in a simulation study.

Index Terms—System identification, maximum likelihood,
Expectation-Maximization, linear matrix inequalities, con-
straints.

I. INTRODUCTION

Maximum likelihood (ML) estimation has been extensively
applied to estimate parameters in time and frequency domains
[1] [2] [3] [4] [5] [6]. However, the associated optimization
problem may be non-convex. The expectation-maximization
(EM) algorithm is an iterative procedure to obtain the ML
estimate for the vector of parameters that define the true
system [7].

The EM algorithm introduces the notion of complete data
set, which includes the observed data and the hidden or
missing data [7]. The algorithm transforms the problem of
maximizing the likelihood function (usually non convex) into
maximizing an auxiliary function which is iteratively updated
and then maximized. For the case of state-space models, the
more obvious choice for the hidden data is the state vector
sequence.

The EM algorithm converges to stationary points of the like-
lihood function (that can be saddle points, or as local or global
maxima) [8]. Conditions for the convergence of the algorithm
were established in [9]. Numerically robust implementations of
EM algorithm for linear state-space discrete time models have
been studied in [10], and for fast and non-uniformly sampled
data models in [11] [12] [13].

The ML estimator is consistent, however when estimating
parameters there is always a limited amount of data. As a
consequence, the estimated model may not reflect charac-
teristics of the real system, such as, for example, stability
or (non) oscillatory behavior. In particular, when estimating
continuous time models from sampled data, prior knowledge
of these characteristics of the physical system have to be
reflected in the estimated model. In this paper, we consider this
requirement and we propose a maximum likelihood estimation

of the parameters of state-space models subject to constraints
on the system poles.

Identification of state-space systems including constraints,
has been developed using subspace methods. For example
in [14] subspace estimation methods are applied and the
matrix A is obtained as the product of a shift matrix with
a pseudo-inverse. In that work, it is shown that if the shift
matrix is formed by entering a block of zeros in a suitable
position, then the resulting model is stable, however, at the cost
of distorting the estimated observability matrix. Alternative
approaches increase the data set, in order to guarantee marginal
stability [15]. In [16], a regularization term is added to the
cost of least squares, to force constraints on the eigenvalues
of the matrix A. An interesting solution provided by [17]
applies a subspace estimation algorithm, using the Lyapunov’s
Inequalities, P−APAT > 0 and P > 0, as constraints. These
inequalities ensure that the estimated model is asymptotically
stable. The approach does not distort the extended observabil-
ity matrix as in [14], nor modifies the estimated state or input
sequences as in [15]. Moreover, in [18] a generalization of [17]
is presented using constraints in the form of linear quadratic
matrix inequalities. In fact, the unit circle and other regions of
interest can be expressed as linear matrix inequalities (LMI).

In this paper we apply constraints based on LMI regions in
ML estimation using the EM algorithm. In particular, we use
LMI to force constraints on the location of the model poles.

The structure of the paper is as follows: Section II presents
the EM algorithm for discrete-time state space models. LMI
constraints are introduced in the EM algorithm in Section III,
and then Section IV presents simulation results and compar-
ison to the use of the unconstrained EM algorithm. Finally,
conclusions are presented in Section V.

II. EM ALGORITHM FOR SAMPLED DATA

A. Continuous-time system description

In this paper, we consider the EM algorithm for state-space
sampled data models. Firstly, we assume a continuous-time
system subject to stochastic disturbances defined, as in [11]
by the following stochastic differential equation (SDE) model
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[19]

dx(t) = Acx(t)dt+Bcu(t)dt+ dw(t) (1)
dz(t) = Ccx(t)dt+Dcu(t)dt+ dv(t) (2)

where u(t) ∈ R, y(t) ∈ R, and x(t) ∈ Rn are the input, output
and state, respectively; the system matrices are Ac ∈ Rn×n,
Bc ∈ Rn×1, Cc ∈ R1×n and Dc ∈ R; and the incremental
state disturbance dw(t) and incremental measurement distur-
bance dv(t) are assumed to be independent, zero mean and
with Gaussian distribution, such that

E

{[
dw(t)
dv(t)

] [
dw(s)
dv(s)

]T}
=

[
Qc 0
0 Rc

]
δk(t− s) (3)

Moreover, the initial state is assumed independent of dw(t)
and dv(t), and also with Gaussian distribution having mean
x̄0 and covariance P0.

Our main interest is to estimate the system parameters

θc = {Ac, Bc, Cc, Dc, Qc, Rc} (4)

subject to the condition that the eigenvalues of the estimate of
Ac yields in a area of interest in the complex plane. We assume
prior knowledge of some characteristics of the system, e.g. the
system is stable. We also assume that the sampling period is
constant Ts = ∆, and the sampling process is fast.

B. Sampled data-model

The problem of dealing with samples of continuous-time
signals has been discussed in the literature, for example in
[11] [20] [21] [22] [23]. In this paper, the system input u(t)
is assumed to be generated from an input sequence uk using
the usual zero order hold (ZOH), i.e.

u(t) = uk , k∆ < t < (k + 1)∆ (5)

where ∆ is the constant sampling period. Moreover, we
assume an integrate and reset filter (IRF) before instantaneous
sampling of the output as described in [11] [22] [24]. Under
these assumptions, an incremental discrete model can be ob-
tained, such that its output has the same second-order statistics
the sampled continuous-time output of the original system
[23]. That model is given by:

dx+
k = Aδxk∆ +Bδuk∆ + dw+

k (6)

ȳk+1∆ = dz+
k = Cδxk∆k +Dδuk∆ + dv+

k (7)

where the increments are defined as

df+
k = fk+1 − fk (8)

The matrices are given by

Aδ =
eAc∆ − I

∆
, Bδ =

[
1

∆

∫ ∆

0

eAcηdη

]
Bc (9)

Cδ = Cc

[
1

∆

∫ ∆

0

eAcηdη

]
(10)

Dδ = Dc + Cc

[
1

∆

∫ ∆

0

∫ ξ

0

eAcηdηdξ

]
Bc (11)

and the covariance structure of the noise vector is given by

E

{[
dw+

l

dv+
l

]T [
dw+

k

dv+
k

]}
=

[
Qδ Sδ

(Sδ)
T Rδ

]
∆δk(l − k) (12)

with[
Qδ Sδ

(Sδ)
T Rδ

]
=

1

∆

∫ ∆

0

[
eAcη 0

Cc
∫ η

0
eAcξdξ I

]
×
[
Qc 0
0 Rc

] [
eAcη 0

Cc
∫ η

0
eAcξdξ I

]T
dη

(13)

The derivation of the expressions above can be found in
[22]. Moreover, an implementation to obtain the integrals of
matrix exponentials in a numerically stable way is presented in
[25]. It can be noticed that when the sample period ∆ goes to
zero, the model (6)-(13) converges to the SDE model (1)-(2).

Alternatively, the model (6)-(13) can be expressed using the
forward-shift operator q, i.e.

qxk = xk+1 = Aqxk +Bquk + w̃k (14)
ȳk = Cqxk +Dquk + v̄k (15)

where

E

{[
w̃l
ṽl

]T [
w̃k
ṽk

]}
=

[
Qq Sq

(Sq)
T Rq

]
δk(l − k) (16)

The transformation between incremental and shift form
model matrices is given by

Aq = I + ∆Aδ , Bq = ∆Bδ , Cq = Cδ , Dq = Dδ (17)

Qq = ∆Qδ , Sq = Sδ , Rq =
1

∆
Rδ (18)

Remark 1: The sampled-data model written in incremental
form may be preferred for fast sampling applications and for
parameter estimation, in particular, due to its convergence
properties as ∆→ 0 [21] [22] [23].

We are interested in obtaining an estimate of the the system
parameters, i.e.

θ = {Aδ, Bδ, Cδ, Dδ, Qδ, Rδ} (19)

such that the eigenvalues of the estimate of matrix Aδ lies in
a specific region of the complex plane.

Remark 2: Notice that constraints used when estimating Aq
or Aδ arise from prior knowledge of Ac.
• If Ac is stable, then Aq and Aδ are stable.
• If Ac has complex conjugate eigenvalues (resonant poles),

then Aq and Aδ have resonant poles.

C. Maximum Likelihood estimation and the EM algorithm

The likelihood function is given by the probability of the
data Y given the parameter vector θ. If the measurements are
Gaussian distributed, usually we consider the natural logarithm
of the likelihood function, i.e.

L(θ) = log p(Y |θ) (20)

622



The maximum (log) likelihood estimate of θ is then given
by

θ̂ML = argmax
θ∈Θ

L(θ) (21)

The maximum likelihood of θ is efficient and asymptotically
consistent. However, the associated optimization problem is,
in general, non-convex.

Is well known that (20) can be rewritten as (see e.g. [2])

L(θ) =− 1

2

N∑
t=1

log det (CqPt|t−1C
T
q +Rq)

− 1

2

N∑
t=1

εTt (θ)[CqPt|t−1C
T
q +Rq]

−1εt(θ)

(22)

where θ are the system parameters and (assuming y0 = 0)

εt(θ) , yt − ŷt|t−1(θ) , ŷt|t−1 , E {yt|y0 : yt−1, θ} (23)

with N the amount of data available and ŷt|t−1 the mean
square optimal one-step ahead prediction of the system output
and the notation y0 : yk = [y0, y1, ..., yk]. Also

Pt|t−1 , E
{

(xt − x̂t|t−1)(xt − x̂t|t−1)T |θ
}

(24)

is the covariance matrix associated to the estimate x̂t|t−1 ,
E {xt|y0 : yt−1, θ}. Both of these may be computed using
Kalman filtering algorithms.

The (log)likelihood function can be rewritten as

log p(Y |θ) = Q(θ, θ̂i)−H(θ, θ̂i) (25)

where θ̂i is an estimate of θ available at the i-th iteration, and

Q(θ, θ̂i) = E
{

log P (X,Y |θ)|Y, θ̂i
}

(26)

H(θ, θ̂i) = E
{

log P (X|Y, θ)|Y, θ̂i
}

(27)

where Y is the available data, and X is the hidden data. Using
Jensen’s inequality it can shown that H(θ, θ̂i) ≤ H(θ̂i, θ̂i) [7].
As a consequence, if we maximize (or increase) the value of
Q(θ, θ̂i) as a function of θ, then we increase the log-likelihood
function, leading to an iterative algorithm. The EM algorithm
is then given by the following steps:
• E-step: given θ̂i, we obtain Q(θ, θ̂i)
• M-step: Find θ that maximize Q(θ, θ̂i), getting a new

parameter estimate θ̂i+1

• Return to the E − step, increasing the index i → i + 1,
and iterate until a convergence criteria is satisfied.

The natural choice of the hidden variables X for state space
models is the state sequence. Thus, in the E-step, given the
state-space discrete-time linear model, the function Q(θ, θ̂)
can be expressed as

−2Q(θ, θ̂i) =log det(P0)+

Tr{P−1
0 E

{
(x0 − µ)(x0 − µ)T |YN

}
}

N log det Π +NTr{Π−1[Φ

−ΨΓT − ΓΨT + ΓΣΓT ]}

(28)

where the augmented matrices can be expressed in terms of
the incremental or the shift operator models matrices

Π ,

[
∆Qδ 0

0 1
∆Rδ

] [
Qq 0
0 Rq

]
(29)

Γ ,

[
I + ∆Aδ ∆Bδ

Cδ Dδ

]
=

[
Aq Bq
Cq Dq

]
(30)

zTt ,
[
xTt uTt

]
, ξTt ,

[
xTt+1 yTt

]
(31)

Φ ,
1

N

N∑
t=1

E
{
ξtξ

T
t |YN , θ̂i

}
(32)

Ψ ,
1

N

N∑
t=1

E
{
ξtz

T
t |YN , θ̂i

}
(33)

Σ ,
1

N

N∑
t=1

E
{
ztz

T
t |YN , θ̂i

}
(34)

where YN = [y1 : yN ]. Notice that, based on the convergence
properties as ∆ → 0, we have neglected Sq = Sδ = 0
(13). The details of the proof can be found in [10] [11]. The
estimated hidden data is the sequence state, that for linear
system with Gaussian noise can be readily obtained using
Kalman smoothing, both in shift-operator or incremental form
(see e.g. [10] [11]).

In the M-step, we need to maximize the auxilary function
Q(θ, θ̂i) in (28). As discussed in Remark 2, if we aim at
preserving properties of the matrix Ac, we need to include
constraints in the estimation of Aq or Aδ . Analytic expressions
for θ̂i+1 that maximizes Q(θ, θ̂i) are given in [10] [11].
However, maximizing the likelihood function may lead to Aq
or Aδ estimates that do not preserve stability or damping
properties arising from Ac for short data sets or low signal-to-
noise ratios. To overcome this problem, in the next section we
propose to introduce constraints in the M-step based in LMI
regions in order to maximize the likelihood function subject
to the constraints of interest in this paper..

III. LMI CONSTRAINTS

Linear matrix inequalities have been used in the system
identification literature, for example, for pole placement and
subspace parameters estimation with eigenvalues constraints
(see, e.g, [26] [27] [18] [28]). In this section, we present a
way to include constraints based on LMI regions in the M-step.
These constraints represent the location of the eigenvalues of
the estimated model.

A general LMI region is defined as

D = {z ∈ C : fD(z) < 0} (35)

where
fD(z) = L+Mz +MT z̄ (36)

with L,M ∈ Rn×n and L = LT and z̄ denotes the conjugate
of z. Therefore, the eigenvalues of A ∈ Rm×m are within
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the LMI region D if and only if there exists a real matrix
P ∈ Rm×m such that

P = PT > 0 (37)

L⊗ P +M ⊗AP +MT ⊗ PAT < 0 (38)

where ⊗ denotes the kronecker product. If a matrix A (and P )
satisfies (37)-(38), then we call A a D-stable matrix. In [26], it
is shown that any LMI region is convex and symmetric respect
to the real axis, and that the intersection of LMI regions is also
an LMI region. Therefore, in this paper we define LMI regions
of interest, such as stability region, i.e. the unit circle in the
z-complex plane, or (a region containing) the real axis within
the stability region.

A region of interest is the stability region for the eigenvalues
of Âδ . This region is a circle with center at (− 1

∆ , 0) and radius
1
∆ [21]. The LMI region for a circle with center (q, 0) and
radius r defined for (35)-(36) is

L =

[
−r −q
−q −r

]
, M =

[
0 1
0 0

]
(39)

We can also define a semi-plane of the complex plane such
that Re{z} > α, which is described in the form of (35)-(36)
by

L = −2α , M = −1 (40)

Another region of interest is |Im{z}| < ε, with ε > 0, which
is characterized by

L = εI2 , M =

[
0 −1
1 0

]
(41)

with I2 the 2× 2 identity matrix. Notice that if we choose an
arbitrarily small ε, we can get a region really arbitrarily close
to the real axis.

Notice that the left-hand-side of the inequalities (37)-(38)
are symmetric matrices and thus, for the constraints, we
can use the Sylvester’s criterion to verify if these matrices
are positive definite [29]. Sylvester’s criterion states that a
symmetric matrix M ∈ Rn×n is positive definite if and only
if all the ` × ` upper left sub matrices of M have a positive
determinant (i.e. the principal minors).

Sylvester’s criterion can be used to reduce the computational
complexity of the corresponding optimization problem in the
M-step of the estimation algorithm. Indeed, one could compute
the principal minors instead of computing their eigenvalues.

Hence, the M-step is defined as follows

θ̂i+1 , argmin
θ
−Q(θ, θ̂i) (42)

subject to

− (L⊗ P +M ⊗AδP +MT ⊗ P (Aδ)
T ) > 0 (43)

P = PT (44)
P > 0 (45)

If Âδ, P ∈ Rn×n and L,M ∈ Rk×k, then the left hand side
of the inequality (43) is a symmetric matrix Rnk×nk, therefore
we can apply Sylvester’s criterion to the nk principal minor.

These determinants are functions of the parameter estimation,
hence the M-step is defined as

θ̂i+1 , argmin
θ
−Q(θ, θ̂i) (46)

subject to
c`(θ) < 0 , with ` = 1, ..., nk (47)

P = PT (48)
bk(θ) < 0 , with k = 1, ..., n (49)

where c` is the `-th principal minor of the left-hand-side of
inequality (43), and bk is the k-th principal minor of P .

A. Log-barrier function

The non-linear optimization problem defined in the M-step
of the estimation algorithm with LMI constraints could be
solved, for example, using fmincon(·) in MatLab. However,
this solver does not guarantee that the constraints are (strictly)
satisfied at each iteration. According to [30] only ”bound”
constraints are strictly satisfied by such solver, where ”bound”
constraints are of the type lb ≤ x ≤ ub, with x the vector
parameter of optimization and lb and ub are constant vectors.
As a consequence, if any non-linear constraint is not satisfied
in one step of the EM algorithm, then our estimation problem
of Âδ will not satisfy the LMI constraints that represent the
desired location of the eigenvalues. In order to overcome this
issue we introduce log-barrier functions in the non-linear
optimization problem.

In particular, for our problem (46) - (49) we define the log-
barrier function as

φ(θ) , −
nk∑
i=1

log (−c`(θ))−
n∑
i=1

log (−bk(θ)) (50)

Then, the optimization problem results

θi+1 , argmin
θ
− t · Q(θ, θ̂i) + φ(θ) (51)

subject to

P = PT (52)

where t is a parameter chosen by the user, typically a large
number.

IV. SIMULATIONS

In this section, we show the results of including constraints
in the M-step of the EM algorithm. Let us consider the
parameter estimation problem for a continuous time system
given by:

G(s) =
1.15(s+ 5.609)

(s+ 6)(s+ 3)
(53)

The sample time is chosen as Ts = 0.008[s]. The state-
space sampled-data model matrices described in shift operator
model (14) - (16) are

Aq =

[
0.9763 0

0 0.9531

]
, Bq =

[
0.0079
0.0008

]
(54)

Cq =
[
0.9881 1.4646

]
, Dq = 0.0046 (55)
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Fig. 1. Eigenvalues of estimated matrix Aq in shift operator model for 200
realizations. The red line corresponds to the unit circle (stability boundary).
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Fig. 2. Eigenvalues of estimated matrix Aδ in incremental model for 200
realizations.

Qq =

[
0.0039 0

0 0.0038

]
, Rq = 1.5242 (56)

Using (17) - (18) we can have the sampled-data model in
incremental form defined in (6) - (13). We consider a short
data set of length N = 300. The requirements are that the
estimated sampled-data model has to be stable and should
have no oscillatory behavior. These requirements are met if
the eigenvalues lie in the segment (0, 1) of the real line for
Âq or, equivalently, in the segment

(−1
∆ , 0

)
of the real line for

Âδ (see the transformations in (17)).
Figure 1 shows the location of the eigenvalues of the

estimated matrix Âq using both the unconstrained EM (green)
and constrained EM (blue) for a Monte-Carlo study with 200
realizations. As can be seen, the eigenvalues of the estimated
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Fig. 3. Log-Likelihood evolution for estimated parameters at each iteration.
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matrix considering the unconstrained EM are sometimes un-
stable or complex conjugate. However, including constraints
into the EM algorithm, the estimated model is stable and non
oscillatory (i.e. real poles). Figure 2 shows the the location
of eigenvalues fore the matrix Âδ in the same Monte-Carlo
study.

Figure 3 shows the evolution of the log-likelihood function
for one particular realization using the unconstrained EM
algorithm and also when LMI constraints are introduced. For
the computation of the log-likelihood, we use (22) with a
scale factor of 1

N . As one would expect, the introduction of
constraints in the parameter space implies that the likelihood
function is smaller than in the unconstrained EM case. Nev-
ertheless, for this particular realization, the unconstrained ML
estimate leads to an oscillatory model and the real (continuous-
time) system is not oscillatory and stable.
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Fig. 5. Log-Likelihood evolution for estimated parameters at each iteration.

Figure 4 shows the evolution of the likelihood using a large
data set (N = 30.000). We can see almost no difference
between both log-likelihood function.

Finally, Figure 5 shows the Bode diagram of the real system
and the estimated models obtained via unconstrained EM
and constrained EM using LMI for one specific realization.
One would think that unconstrained EM provides a more
accurate model (both in magnitude and phase), however, it
corresponds to an unstable model. In contrast, the discrete-
time estimated model obtained using constrained EM is stable
and non oscillatory.

V. CONCLUSIONS

The EM algorithm has been used in this paper to estimate
sampled data models with constraints in the location of the
system eigenvalues. LMI constraints have been used for the
eigenvalues of the estimated discrete-time system matrix (Âq
or Âδ), to guarantee that they lie on a specific region of
interest. The results show that by introducing these constraints,
the model obtained have the same characteristics than the
original system. One would expect that introducing additional
knowledge of the original system would improve the likeli-
hood function, however, in our approach the knowledge of the
system is implemented as constraint in the parameter space
and, thus, the likelihood function is smaller that the uncon-
strained case. The approach presented here can be useful, in
particular, for short data sets or low signal to noise ratio.
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